资源类型

期刊论文 226

会议视频 2

年份

2023 25

2022 21

2021 25

2020 20

2019 13

2018 10

2017 7

2016 7

2015 6

2014 7

2013 7

2012 7

2011 7

2010 5

2009 7

2008 10

2007 16

2006 7

2005 3

2004 3

展开 ︾

关键词

力学性能 8

数值模拟 3

力学模型 2

微机电系统 2

斜拉桥 2

机械性能 2

机械结构 2

现场监测 2

2021全球工程前沿 1

ANSYS 1

DNA结构 1

EBSD 1

FRP 聚合物 1

PVA/SiO2 1

TRIP钢 1

X射线 1

X射线阻射性 1

δ铁素体 1

“一带一路”,制造业,六大经济走廊,显性比较优势指数,多维尺度分析 1

展开 ︾

检索范围:

排序: 展示方式:

Mechanical and geometric advantages in compliant mechanism optimization

Michael Yu WANG

《机械工程前沿(英文)》 2009年 第4卷 第3期   页码 229-241 doi: 10.1007/s11465-009-0066-1

摘要: This paper presents a focused examination of the mechanical and geometric advantages in compliant mechanisms and their ramifications in the design formulations of compliant mechanisms posed as a topology optimization problem. With a linear elastic structural analysis, we quantify mechanical (and geometric) advantage in terms of the stiffness elements of the mechanism's structure. We then analyze the common formulations of compliant mechanism optimization and the role of the external springs added in the formulations. It is shown that the common formulations using mechanical (or geometric) advantage would directly emulate at best a rigid-body linkage to the true optimum design. As a result, the topology optimization generates point flexures in the resulting optimal mechanisms. A case study is investigated to demonstrate the resulting trends in the current formulations.

关键词: compliant mechanisms     topology optimization     mechanical advantage     pseudo rigid-body mechanisms    

HOW MULTISPECIES INTERCROP ADVANTAGE RESPONDS TO WATER STRESS: A YIELD-COMPONENT ECOLOGICAL FRAMEWORK

《农业科学与工程前沿(英文)》 2021年 第8卷 第3期   页码 416-431 doi: 10.15302/J-FASE-2021412

摘要:

Absolute yield and land use efficiency can be higher in multicrops. Though this phenomenon is common, it is not always the case. Also, these two benefits are frequently confused and do not necessarily occur together. Cropping choices become more complex when considering that multicrops are subject to strong spatial and temporal variation in average soil moisture, which will worsen with climate change. Intercropping in agroecosystems is expected to buffer this impact by favoring resistance to reduced humidity, but there are few empirical/experimental studies to validate this claim. It is not clear if relatively higher multicrop yield and land use efficiency will persist in the face of reduced soil moisture, and how the relation between these benefits might change. Here, we present a relatively simple framework for analyzing this situation. We propose a relative multicrop resistance (RMR) index that captures all possible scenarios of absolute and relative multicrop overyield under water stress. We dissect the ecological components of RMR to understand the relation between higher multicrop yield and land use efficiency and the ecological causes of different overyield scenarios. We demonstrate the use of this framework with data from a 128 microplot greenhouse experiment with small annual crops, arranged as seven-species multicrops and their corresponding monocrops, all under two contrasting watering regimes. We applied simple but robust statistical procedures to resulting data (based on bootstrap methods) to compare RMR, and its components, between different plants/plant parts. We also provide simple graphical tools to analyze the data.

 

关键词: agroecosystem sustainability     crop overyielding     intercrop drought resistance     overyield ecological components    

Taking advantage of drug resistance, a new approach in the war on cancer

null

《医学前沿(英文)》 2018年 第12卷 第4期   页码 490-495 doi: 10.1007/s11684-018-0647-7

摘要:

Identification of the driver mutations in cancer has resulted in the development of a new category of molecularly targeted anti-cancer drugs. However, as was the case with conventional chemotherapies, the effectiveness of these drugs is limited by the emergence of drug-resistant variants. While most cancer therapies are given in combinations that are designed to avoid drug resistance, we discuss here therapeutic approaches that take advantage of the changes in cancer cells that arise upon development of drug resistance. This approach is based on notion that drug resistance comes at a fitness cost to the cancer cell that can be exploited for therapeutic benefit. We discuss the development of sequential drug therapies in which the first therapy is not given with curative intent, but to induce a major new sensitivity that can be targeted with a second drug that selectively targets the acquired vulnerability. This concept of collateral sensitivity has hitherto not been used on a large scale in the clinic and holds great promise for future cancer therapy.

关键词: cancer     drug resistance     genetic screens     senescence     targeted therapy    

EXPLORING THE RELATIVE ADVANTAGES OF LOCAL INNOVATION IN AGROFORESTRY

《农业科学与工程前沿(英文)》 2023年 第10卷 第1期   页码 61-72 doi: 10.15302/J-FASE-2022476

摘要:

● Promotion of local sustainable innovation developed by forest farmers.

关键词: agroforestry     forest farmers     local innovation     relative advantage     social forestry    

A bionic approach for the mechanical and electrical decoupling of an MEMS capacitive sensor in ultralow

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-023-0747-1

摘要: Capacitive sensors are efficient tools for biophysical force measurement, which is essential for the exploration of cellular behavior. However, attention has been rarely given on the influences of external mechanical and internal electrical interferences on capacitive sensors. In this work, a bionic swallow structure design norm was developed for mechanical decoupling, and the influences of structural parameters on mechanical behavior were fully analyzed and optimized. A bionic feather comb distribution strategy and a portable readout circuit were proposed for eliminating electrostatic interferences. Electrostatic instability was evaluated, and electrostatic decoupling performance was verified on the basis of a novel measurement method utilizing four complementary comb arrays and application-specific integrated circuit readouts. An electrostatic pulling experiment showed that the bionic swallow structure hardly moved by 0.770 nm, and the measurement error was less than 0.009% for the area-variant sensor and 1.118% for the gap-variant sensor, which can be easily compensated in readouts. The proposed sensor also exhibited high resistance against electrostatic rotation, and the resulting measurement error dropped below 0.751%. The rotation interferences were less than 0.330 nm and (1.829 × 10−7)°, which were 35 times smaller than those of the traditional differential one. Based on the proposed bionic decoupling method, the fabricated sensor exhibited overwhelming capacitive sensitivity values of 7.078 and 1.473 pF/µm for gap-variant and area-variant devices, respectively, which were the highest among the current devices. High immunity to mechanical disturbances was maintained simultaneously, i.e., less than 0.369% and 0.058% of the sensor outputs for the gap-variant and area-variant devices, respectively, indicating its great performance improvements over existing devices and feasibility in ultralow biomedical force measurement.

关键词: micro-electro-mechanical system capacitive sensor     bionics     operation instability     mechanical and electrical decoupling     biomedical force measurement    

Determination of mechanical parameters for elements in meso-mechanical models of concrete

Xianglin GU, Junyu JIA, Zhuolin WANG, Li HONG, Feng LIN

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 391-401 doi: 10.1007/s11709-013-0225-7

摘要: The responses of cement mortar specimens of different dimensions under compression and tension were calculated based on the discrete element method with the modified-rigid-body-spring concrete model, in which the mechanical parameters derived from macro-scale material tests were applied directly to the mortar elements. By comparing the calculated results with those predicted by the Carpinteri and Weibull size effects laws, a series of formulas to convert the macro-scale mechanical parameters of mortar and interface to those at the meso-scale were proposed through a fitting analysis. Based on the proposed formulas, numerical simulation of axial compressive and tensile failure processes of concrete and cement mortar materials, respectively were conducted. The calculated results were a good match with the test results.

关键词: concrete     meso-mechanical model     discrete element method     size effect     mechanical parameter    

Facile synthesis of polyaniline nanorods to simultaneously enhance the mechanical properties and wear

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1254-1266 doi: 10.1007/s11705-023-2297-3

摘要: To enhance the mechanical properties and wear resistance of epoxy resin, polyaniline nanorods were first synthesized using a facile route, and then introduced into the epoxy matrix to yield composites via solution mixing. Several measurements were conducted to investigate the phase structures and compositions of polyaniline nanorods, and their positive influences on the mechanical and tribological properties of epoxy resin were also characterized. The results confirmed that the as-synthesized polyaniline exhibited representative rod-like morphologies and dispersed well in the epoxy matrix, leading to significant enhancements in the tensile strength and elastic modulus of epoxy composites. The highest values of 110.33 MPa and 2.04 GPa were obtained by adding 5%–7% polyaniline nanorods, which were 43% and 62% higher than the pure sample, respectively. The wear rate was increased first and then decreased along with polyaniline nanorods, presenting the lowest value of 2.12 × 10−5 mm3·Nm–1 by adding 5% filler, which was markedly reduced by ca. 70% compared to the control sample. Finally, the possible wear mechanism was proposed and discussed in detail. This study tried to broaden the applications of polyaniline nanorods in the field of tribology.

关键词: epoxy resin     polyaniline nanorods     mechanical property     tribological performance     wear mechanism    

An autonomous miniature wheeled robot based on visual feedback control

CHEN Haichu

《机械工程前沿(英文)》 2007年 第2卷 第2期   页码 197-200 doi: 10.1007/s11465-007-0033-7

摘要: Using two micro-motors, a novel omni-direction miniature wheeled robot is designed on the basis of the bi-corner driving principle. The robot takes advantage of the Bluetooth technology to wirelessly transmit data at a short distance. Its position and omni-direction motion are precise. A Charge Coupled Device (CCD) camera is used for measuring and for visual navi gation. A control system is developed. The precision of the position is 0.5 mm, the resolution is about 0.05 mm, and the maximum velocity is about 52 mm/s. The visual navigation and control system allow the robot to navigate and track the target and to accomplish autonomous locomotion.

关键词: measuring     distance     autonomous locomotion     advantage     navigation    

LYX: A novel aerobic bacterium with advantage of removing nitrate high effectively by assimilation and

Yuxin Li, Jiayin Ling, Pengcheng Chen, Jinliang Chen, Ruizhi Dai, Jinsong Liao, Jiejing Yu, Yanbin Xu

《环境科学与工程前沿(英文)》 2021年 第15卷 第4期 doi: 10.1007/s11783-020-1349-3

摘要: Abstract • Pseudomonas mendocina was first reported for aerobic nitrate removal. • It removed 90% of NO3−-N in 24 h under aerobic conditions. • This strain converted NO3−-N to bio-nitrogen (37.9%) and gaseous nitrogen (49.7%). • Inoculation of this strain increased sludge denitrification rate by 4.3 times. The problem of nitrate accumulation in aerobic tank and total nitrogen excessive discharge in effluent was very common in traditional livestock and poultry farming wastewater treatment systems owing to the lengthy process flow and low process control level. A strain LYX of aerobic bacterium was isolated from the activated sludge of a wastewater treatment system in a pig farm, which could remove nitrate effectively in aerobic tank and was identified Pseudomonas mendocina by 16S rRNA sequencing. Under the condition of nitrate as the sole nitrogen source, this strain removed over 90% of NO3−-N with an initial concentration of 110 mg/L under aerobic conditions within 48 hours. Among them, 37.9% of NO3−-N was assimilated into Bio-N, about 51.9% was reduced to gaseous nitrogen and less than 0.5% of nitrogen was replaced by NO2−-N and NH4+-N, 9.7% NO3−-N remained in the effluent at the end. At the same time, four key genes (napA, nirK, norB and nosZ) related to nitrate nitrogen removal were expressed during the denitrification process of P. mendocina LYX, in which the transcription level of the indicator genes of this aerobic denitrifying bacterium (napA) was the highest. In addition, it was found with the 15N tracer technique that inoculation of this strain on sludge increased the amount of nitrogen loss from 9.26 nmol N/(g·h) to 23.835 nmol N/(g·h). Therefore, P. medocina LYX is a potential bioagent for advanced nitrogen removal by assimilating and reducing nitrate simultaneously in aerobic tanks.

关键词: Pseudomonas mendocina     Aerobic nitrate removal     15N tracing technique     Denitrification assimilatively and disimilatively     Aerobic denitrifying genes    

工业孵化工程及其产业化

卢锐,盛昭瀚

《中国工程科学》 2001年 第3卷 第5期   页码 28-31

摘要:

工业孵化工程正在全球开展。工业孵化工程涉及生产要素的安排和经营管理等问题,实际运行十分复杂。我国正在大力推行该工程,其中也面临诸多的选择。

关键词: 工业孵化工程     优势     管理     产业化    

Thermo-mechanical simulation of frost heave in saturated soils

《结构与土木工程前沿(英文)》   页码 1400-1412 doi: 10.1007/s11709-023-0990-x

摘要: Roads are exposed to various degradation mechanisms during their lifetime. The pavement deterioration caused by the surrounding environment is particularly severe in winter when the humidity and subfreezing temperatures prevail. Frost heave-induced damage is one of the winter-related pavement deterioration. It occurs when the porewater in the soil is exposed to freezing temperatures. The study of frost heave requires conducting a multiphysics analysis, considering the thermal, mechanical, and hydraulic fields. This paper presents the use of a coupled thermo-mechanical approach to simulate frost heave in saturated soils. A function predicting porosity evolution is implemented to couple the thermal and mechanical field analyses. This function indirectly considers the effect of the water seepage inside the soil. Different frost heave scenarios with uniform and non-uniform boundary conditions are considered to demonstrate the capabilities of the method. The results of the simulations indicate that the thermo-mechanical model captures various processes involved in the frost heave phenomenon, such as water fusion, porosity variation, cryogenic suction force generation, and soil expansion. The characteristics and consequences of each process are determined and discussed separately. Furthermore, the results show that non-uniform thermal boundaries and presence of a culvert inside the soil result in uneven ground surface deformations.

关键词: frost heave     multiphysics analysis     thermo-mechanical approach     saturated soils    

Electronic and mechanical responses of two-dimensional HfS

Mohammad SALAVATI

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 486-494 doi: 10.1007/s11709-018-0491-5

摘要: During the last decade, numerous high-quality two-dimensional (2D) materials with semiconducting electronic character have been synthesized. Recent experimental study (Sci. Adv. 2017;3: e1700481) nevertheless confirmed that 2D ZrSe and HfSe are among the best candidates to replace the silicon in nanoelectronics owing to their moderate band-gap. We accordingly conducted first-principles calculations to explore the mechanical and electronic responses of not only ZrSe and HfSe , but also ZrS and HfS in their single-layer and free-standing form. We particularly studied the possibility of engineering of the electronic properties of these attractive 2D materials using the biaxial or uniaxial tensile loadings. The comprehensive insight provided concerning the intrinsic properties of HfS , HfSe , ZrS , and ZrSe can be useful for their future applications in nanodevices.

关键词: 2D materials     mechanical     electronic     DFT    

An analytical method for calculating torsional constants for arbitrary complicated thin-walled cross-sections

DU Baisong, GE Yaojun, ZHOU Zheng

《结构与土木工程前沿(英文)》 2007年 第1卷 第3期   页码 293-297 doi: 10.1007/s11709-007-0038-7

摘要: In this paper, an analytical method is proposed for calculating torsional constants for complicated thin-walled cross-sections with arbitrary closed or open rib stiffeners. This method uses the free torsional theory and the principle of virtual work to build governing equilibrium equations involving unknown shear flows and twisting rate. After changing the form of the equations and combining these two unknowns into one, torsional function, which is a function of shear flow, shear modulus, and twisting rate, is included in the governing equations as only one of the unknowns. All the torsional functions can be easily obtained from these homogeneous linear equations, and torsional constants can be easily obtained from the torsional functions. The advantage of this method is that we can easily and directly obtain torsional constants from the torsional functions, rather than the more sophisticated shear flow and twisting rate calculations. Finally, a complicated thin-walled cross-section is given as a valid numerical example to verify the analytical method, which is much more accurate and simpler than the traditional finite element method.

关键词: homogeneous     complicated thin-walled     numerical example     advantage     torsional function    

中国保健食品的优势与发展

李连达,靖雨珍

《中国工程科学》 2003年 第5卷 第5期   页码 35-39

摘要:

中国保健品最大特点与优势是传统养生学与现代营养学及食品科学相结合,历史悠久,近年发展迅速。文章论述了中国保健食品的历史与现状,基本理论与技术内容,行政管理与市场监督,并对目前出现的一些问题及对策进行了讨论。

关键词: 保健食品     养生学     食品科学    

Experimental study on compaction-induced anisotropic mechanical property of rockfill material

Xiangtao ZHANG, Yizhao GAO, Yuan WANG, Yu-zhen YU, Xun SUN

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 109-123 doi: 10.1007/s11709-021-0693-0

摘要: The anisotropy of rockfill materials has a significant influence on the performance of engineering structures. However, relevant research data are very limited, because of the difficulty with preparing specimens with different inclination angles using traditional methods. Furthermore, the anisotropy test of rockfill materials is complex and complicated, especially for triaxial tests, in which the major principal stress plane intersects with the compaction plane at different angles. In this study, the geometric characteristics of a typical particle fraction consisting of a specific rockfill material were statistically investigated, and the distribution characteristics of particle orientation in specimens prepared via different compaction methods were examined. For high-density rockfill materials, a set of specimen preparation devices for inclined compaction planes was developed, and a series of conventional triaxial compression tests with different principal stress direction angles were conducted. The results reveal that the principal stress direction angle has a significant effect on the modulus, shear strength, and dilatancy of the compacted rockfill materials. Analysis of the relationship between the principal stress direction angles, change in the stress state, and change in the corresponding dominant shear plane shows that the angle between the compacted surface and dominant shear plane is closely related to interlocking resistance associated with the particle orientation. In addition, different principal stress direction angles can change the extent of the particle interlocking effect, causing the specimen to exhibit different degrees of anisotropy.

关键词: rockfill     inclination of specimen preparation     anisotropy     mechanical property     mechanism    

标题 作者 时间 类型 操作

Mechanical and geometric advantages in compliant mechanism optimization

Michael Yu WANG

期刊论文

HOW MULTISPECIES INTERCROP ADVANTAGE RESPONDS TO WATER STRESS: A YIELD-COMPONENT ECOLOGICAL FRAMEWORK

期刊论文

Taking advantage of drug resistance, a new approach in the war on cancer

null

期刊论文

EXPLORING THE RELATIVE ADVANTAGES OF LOCAL INNOVATION IN AGROFORESTRY

期刊论文

A bionic approach for the mechanical and electrical decoupling of an MEMS capacitive sensor in ultralow

期刊论文

Determination of mechanical parameters for elements in meso-mechanical models of concrete

Xianglin GU, Junyu JIA, Zhuolin WANG, Li HONG, Feng LIN

期刊论文

Facile synthesis of polyaniline nanorods to simultaneously enhance the mechanical properties and wear

期刊论文

An autonomous miniature wheeled robot based on visual feedback control

CHEN Haichu

期刊论文

LYX: A novel aerobic bacterium with advantage of removing nitrate high effectively by assimilation and

Yuxin Li, Jiayin Ling, Pengcheng Chen, Jinliang Chen, Ruizhi Dai, Jinsong Liao, Jiejing Yu, Yanbin Xu

期刊论文

工业孵化工程及其产业化

卢锐,盛昭瀚

期刊论文

Thermo-mechanical simulation of frost heave in saturated soils

期刊论文

Electronic and mechanical responses of two-dimensional HfS

Mohammad SALAVATI

期刊论文

An analytical method for calculating torsional constants for arbitrary complicated thin-walled cross-sections

DU Baisong, GE Yaojun, ZHOU Zheng

期刊论文

中国保健食品的优势与发展

李连达,靖雨珍

期刊论文

Experimental study on compaction-induced anisotropic mechanical property of rockfill material

Xiangtao ZHANG, Yizhao GAO, Yuan WANG, Yu-zhen YU, Xun SUN

期刊论文